MATEMÁTICA DE 1°

EES N° 13

CUADERNILLO DE ACTIVIDADES

DEPARTAMENTO

DE Matemática

Contenidos

- Fracciones. Representación, operaciones básicas. Porcentaje.
- Números naturales: operaciones y estrategias de cálculo: suma, resta, multiplicación, división, potenciación, radicación. Propiedades: propiedad distributiva. Ecuaciones con las seis operaciones. Divisibilidad. Máximo común divisor, Mínimo común múltiplo.
- Ángulos: clasificación. Ángulos adyacentes, complementarios, suplementarios, opuestos por el vértice, consecutivos. Operaciones en el sistema sexagesimal.
- Figuras planas: construcción, unidades SIMELA. Perímetro y área de figuras (triángulo, cuadriláteros).

Contenido

1.	Fracciones	2
2.	Números naturales	8
3.	Ángulos	21
	Figuras planas, SIMELA	

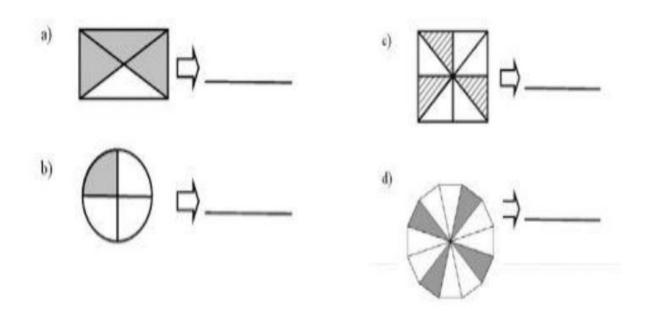
1. Fracciones

1) Graficar y clasificar las siguientes fracciones:

a)
$$\frac{5}{6} = b$$
) $\frac{10}{7} = c$) $\frac{8}{8} = d$) $\frac{12}{6} = e$) $\frac{11}{9} = f$) $\frac{3}{4} = e$

2) Hallar 5 fracciones equivalentes a cada una de las dadas:

$$\frac{3}{5}$$
 $\frac{7}{11}$ $\frac{2}{5}$ $\frac{12}{5}$ $\frac{8}{6}$ $\frac{10}{13}$


3) Representar en la recta numérica:

a)
$$\frac{7}{9}$$
 b) $\frac{5}{3}$ c) $\frac{6}{11}$ d) $\frac{15}{2}$

4) Simplificar hasta hallar la fracción irreducible:

a)
$$\frac{24}{32}$$
 b) $\frac{60}{30}$ c) $\frac{42}{98}$ d) $\frac{64}{72}$ e) $\frac{35}{105}$

5) Escribir la fracción de la parte sombreada:

Colocar <, > o =

a)
$$\frac{1}{2}$$
 $\frac{1}{3}$

b)
$$\frac{2}{5}$$
 $\frac{5}{2}$ | c) $\frac{9}{6}$ $\frac{12}{8}$

c)
$$\frac{9}{6}$$
 $\frac{12}{8}$

d)
$$\frac{6}{7}$$
 $\frac{8}{9}$

e)
$$\frac{3}{5}$$
 $\frac{4}{7}$

f)
$$\frac{1}{4}$$
 $\frac{20}{80}$

Completar los casilleros en blanco para que las fracciones sean equivalente:

a)
$$\frac{1}{2}$$
 $\frac{1}{3}$

b)
$$\frac{2}{5}$$
 $\frac{5}{2}$ | c) $\frac{9}{6}$ $\frac{12}{8}$

c)
$$\frac{9}{6}$$
 $\frac{12}{8}$

d)
$$\frac{6}{7}$$
 $\frac{8}{9}$

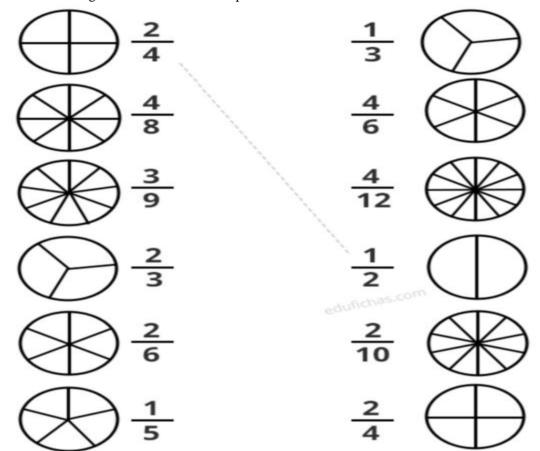
e)
$$\frac{3}{5}$$
 $\frac{4}{7}$

f)
$$\frac{1}{4}$$
 $\frac{20}{80}$

Completar con una fracción que se encuentre entre las fracciones dadas:

a)
$$\frac{3}{8} < - < \frac{6}{8}$$

b)
$$\frac{7}{4} < < \frac{7}{3}$$


c)
$$\frac{2}{3} < < \frac{3}{2}$$

d)
$$\frac{2}{7} < - < \frac{1}{2}$$

Ordenar de menor a mayor:

$$\frac{1}{4}$$
 $\frac{4}{3}$

10) Pintar en cada gráfico la fracción correspondiente:

11) Marcar cuáles de las fracciones son equivalentes:

Marcar cual	es de las fracci	ones son e	quivalentes:				
$\frac{8}{11} =$	32 44	$\frac{4}{6} =$	20 30	$\frac{2}{8}$ =	8 32	$\frac{11}{11} =$	$\frac{44}{44}$
$\frac{2}{3}$ =	4 6	$\frac{5}{6}$ =	$\frac{10}{24}$	$\frac{2}{6} =$	$\frac{6}{24}$	$\frac{1}{2} =$	4 8
$\frac{6}{12} =$	12 24	$\frac{1}{5}$ =	<u>5</u> 25	$\frac{3}{11} =$	9 55	$\frac{2}{7} =$	$\frac{6}{28}$
$\frac{6}{12} =$	<u>30</u>	$\frac{4}{12} =$	<u>20</u> 24	$\frac{1}{3} =$	$\frac{4}{12}$	$\frac{11}{11} =$	33 33
$\frac{10}{11} =$	<u>50</u> 33	$\frac{1}{2}$ =	4 8	$\frac{12}{12} =$	<u>36</u> 60	$\frac{7}{8}$ =	14 16
$\frac{9}{9} =$	<u>36</u> 36	$\frac{6}{9} =$	24 36	$\frac{2}{4}$ =	$\frac{6}{12}$	$\frac{5}{5}$ =	20 20
$\frac{6}{9} =$	30 27	$\frac{1}{5}$ =	$\frac{3}{15}$	$\frac{9}{10} =$	36 30	$\frac{6}{6}$ =	18 18
$\frac{10}{12} =$	40 48	$\frac{9}{9} =$	18 18	$\frac{5}{9} =$	2 <u>0</u> 27	$\frac{2}{4} =$	10 20
$\frac{3}{12} =$	12 36	$\frac{9}{9} =$	45 36	$\frac{3}{12} =$	<u>6</u> 24	$\frac{3}{6} =$	15 30

12) Resolver las siguientes sumas y restas:

a)
$$\frac{5}{6} + \frac{7}{9} + \frac{4}{3}$$

a)
$$\frac{5}{6} + \frac{7}{9} + \frac{4}{3}$$
 b) $\frac{5}{6} + \frac{7}{9} - \frac{1}{3}$

c)
$$\frac{2}{3} + \frac{11}{15} - \frac{1}{5}$$

c)
$$\frac{2}{3} + \frac{11}{15} - \frac{1}{5}$$
 d) $\frac{8}{12} + \frac{2}{5} - \frac{1}{2} - \frac{1}{10}$

13) Resolver las siguientes multiplicaciones y divisiones:

a)
$$\frac{2}{3} \cdot \frac{15}{14}$$

b)
$$\frac{4}{3}$$
: $\frac{7}{11}$

c)
$$6 \cdot \frac{5}{4}$$

d)
$$\frac{4}{3}$$
:6

14) Resolver las siguientes operaciones combiandas:

a)
$$\frac{6}{7} \cdot \left(\frac{9}{4} + \frac{3}{8} \right)$$

a)
$$\frac{6}{7} \cdot \left(\frac{9}{4} + \frac{3}{8}\right)$$
 b) $\left(8 + \frac{2}{5}\right) : \left(6 - \frac{9}{4}\right)$

c)
$$\frac{7}{9}: \frac{4}{3} + \frac{8}{12} \cdot \frac{2}{5}$$
 d) $\frac{8}{12} + \frac{2}{5}: \frac{6}{7}$

d)
$$\frac{8}{12} + \frac{2}{5} : \frac{6}{7}$$

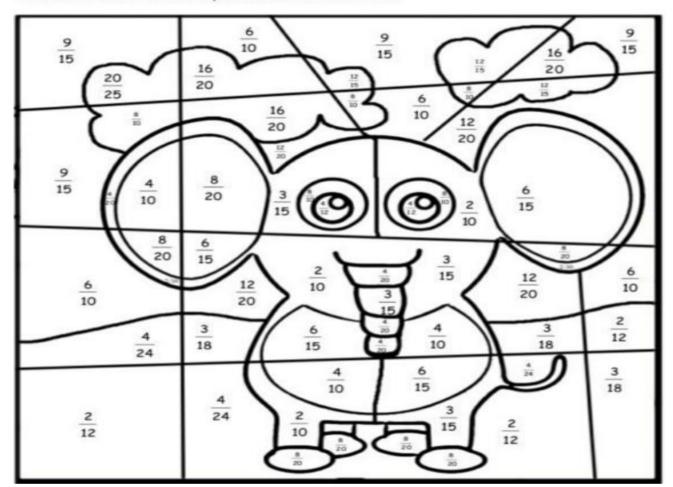
e)
$$\frac{5}{6} + \frac{7}{9} \cdot \frac{4}{3} - \frac{1}{2}$$

e)
$$\frac{5}{6} + \frac{7}{9} \cdot \frac{4}{3} - \frac{1}{2}$$
 f) $\frac{5}{6} + \frac{7}{9} \cdot \left(\frac{4}{3} - \frac{1}{2}\right)$

- 15) Expresar el resultado en fracción:
 - Si se reparten en partes iguales 7 barras de chocolates entre 5 niños, ¿cuánto chocolate le corresponde a cada uno?
 - b. Se reparten 5 kg. de moras en 4 bolsas de forma que las 4 pesen lo mismo. ¿Cuántos kilogramos tendrá cada bolsa?
 - c. De una torta de cumpleaños, Jorge agarra la cuarta parte, María agarra la tercera parte de lo que le queda y Carolina la mitad de lo que queda. ¿Qué fracción agarra cada uno? ¿Qué parte sobra de la torta?
- 16) Plantear y resolver:
 - a. Florencia regaló $\frac{2}{5}$ de las 45 figuritas que tenía repetidas. ¿Cuántas regaló en total? ¿Qué parte le quedó?
 - b. Para llegar a Mar del Plata, Rubén consumió $\frac{3}{4}$ del tanque de nafta de su auto. Si el tanque tiene una capacidad de 52 litros, ¿cuántos litros le quedan aún?
 - c. Camila gasta $\frac{1}{3}$ de su sueldo en impuestos y $\frac{1}{4}$ en el alquiler de su departamento. Si su sueldo es de \$78000, ¿cuánto dinero destina para el alquiler e impuestos? ¿Qué aprte de su sueldo le queda para otros gastos?

17) Pintar según el resultado y color pedido:

Colorea todas las fracciones equivalentes a 1/5 de MORADO.


Colorea todas las fracciones equivalentes a 2/5 de GRIS.

Colorea todas las fracciones equivalentes a 3/5 de AZUL.

Colorea todas las fracciones equivalentes a 4/5 de BLANCO.

Colorea todas las fracciones equivalentes a 1/6 de VERDE.

Colorea todas las fracciones equivalentes a 2/6 de NEGRO.

Porcentaje

Tanto por ciento

Cuando una cantidad se multiplica por una fracción de denominador 100, se está calculando un porcentaje de esa cantidad.

Así, si una cantidad se multiplica por $\frac{35}{100}$ o por 0,35, se obtiene su 35%, y si la cantidad se multiplica por $\frac{3}{100}$ o por 0,03, se obtiene su 3%.

El 100% de una cantidad x es igual a la misma cantidad: $\frac{100}{100} \cdot x = x$.

Los porcentajes suelen utilizarse en la vida diaria para hacer comparaciones o para calcular recargos o descuentos.

Si hay que abonar \$135 con un **descuento del 4%**, se calcula el 4% de \$135 y el valor que se obtiene se resta de \$135. También se puede calcular directamente **el porcentaje que se deberá pagar**, o sea, el 96% (100% - 4%): **96% de \$135** = $0.96 \cdot $135 = $129,60$.

Si hay que abonar \$120 con un **recargo del 5%**, se puede calcular el 5% de \$120 y el valor que se obtiene se suma a \$120. También se puede calcular directamente **el porcentaje que se deberá abonar**, o sea, 105% (100% + 5%): 105% **de \$120** = $1,05 \cdot 120 = \$126.

18) Calculá

a)	15% de 320 =	c) 48% de 50 =
b)	12% de 84 =	d) 124% de 18 =

19) Completa con el porcentaje que corresponda:

Para hallar el	% de una cantidad, calculo su mitad.
Para hallar el	% de una cantidad, la divido por 10.
Para hallar el	% de una cantidad, la divido por 4.
La quinta parte d	de una cantidad representa su%.

20) Plantea y resuelve:

Una computadora tiene un precio de \$ 3 000. Si se paga en efectivo se descuenta un 15% y si se compra e cuotas se recarga un 20%.

Calcular y responder.

a) ¿Cuánto dinero es el descuento?

c) ¿Cuánto dinero es el recargo?

b) ¿Cuál es el precio en efectivo?

d) ¿Cuánto es el precio con recargo?

21) Plantea y resuelve:

ELIVA (Impuesto al Valor Agregado) es un recargo del 21% que se debe pagar cada vez que se realiza una compra.

Completar el siguiente cuadro.

Artículo	Celular	Heladera	Plancha	Microondas	Estufa	Televisor
Precio sin IVA	\$ 400	\$ 1 800	\$ 280			
Precio + IVA				\$ 605	\$ 847	\$1815

22) Plantea y resuelve:

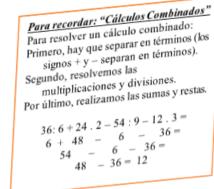
En junio llegaron a una ciudad del sur 180 turistas de países limítrofes. En julio el ingreso se incrementó en un 50% respecto del mes anterior y en agosto se redujo en un 20% respecto de julio. ¿Cuántos turistas llegaron en julio y cuántos, en agosto?

23) Calcular teniendo en cuenta el porcentaje final que se paga de un producto (por ejemplo, si el descuento es del 5%, lo que pago del producto es el 95%):

a)	El precio de una licuadora de \$ 400 con un descuento del 9%.	precio de un reloj que se abonó \$ 204 con un scuento del 15%.
b)	El importe a pagar por una factura de \$ 95 con un recargo del 4%.	 importe de una factura que con un recargo del % se abonó \$ 71,50.

2. Números naturales

1) Plantear y resolver:


Un campesino ha cosechado 259 cajas de 5 kg de tomate cada una y 539 cajas de 8 kg ¿Cuántos kilos de tomate ha cosechado?

2) Separar en términos y resolver los siguientes cálculos combinados.

a.
$$144:9+63:7-65:5+64.8=$$

e.
$$370:5+52.47-561:3-29.38=$$

 Pablo y Luciana están estudiando para la prueba de Matemáticas y resolvieron estos cálculos. Revísenlos y, si detectan errores, resuélvanlos correctamente.

Pablo resolvió

1)
$$15 - 6 : 3 = 3$$

1)
$$21:3+4=3$$

$$2) 5 \cdot 2 - 4 : 2 + 9 \cdot 8 = 96$$

2)
$$2 \cdot 6 + 3 \cdot 5 - 14 : 2 = 20$$

3)
$$12:2+1+100:20=12$$

3)
$$51:3+3.4-12.2=16$$

4) Nicolás tenía ahorrado dos billetes de \$200, cuatro billetes de \$100, cinco billetes de \$50 y siete billetes de \$20; y los uso para invitar a su primo al cine como regalo de cumpleaños.

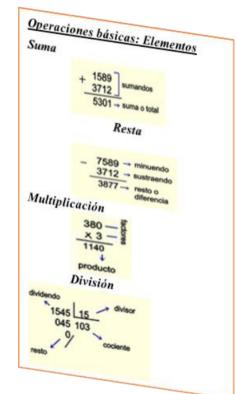
Cada entrada costó \$240, compró dos helados de \$140 cada uno y viajaron ida y vuelta en colectivo pagando \$18 por cada boleto.

Indicar cuál o cuáles de los siguientes cálculos permite averiguar cuánto dinero le queda a Nicolás de sus ahorros y resuélvelo

1)
$$2.200 + 4.100 + 5.50 + 7.20 - 240 - 140 - 18 =$$

2)
$$2.200 + 4.100 + 5.50 + 7.20 - 240.2 - 140.2 - 36.2 =$$

3)
$$200 + 400 + 250 + 140 - (480 + 280 + 72) =$$


4)
$$200 + 400 + 250 + 140 - 2 \cdot (240 + 140 + 36) =$$

[Importante!

En toda división siempre se cumple que:

D = d. c + r (Dividendo es igual al divisor por el cociente más el resto)

- El resto es siempre menor que el divisor (0≤ r < d).
- Si el resto es cero, la división entera es exacta.
 Sino, es inexacta.
- No se puede dividir por cero.

5) En un laboratorio se está estudiando el crecimiento de una población de bacterias. Para esto, se hace un recuento de las bacterias una vez por hora, durante seis horas.

El científico olvido registrar en la planilla algunos datos, pero recordaba perfectamente que en cada conteo encontraba el triple de las había en la hora anterior.

a) Completar los datos que faltan en el registro:

Registro de crecimiento de población de Bacterias									
Hora 1 2 3 4 5 6									
Cantidad de bacterias	3					729			

b) ¿Cuántas bacterias habrá después de 8 horas? Escribir el cálculo que usaron para encontrar el resultado.

Estas multiplicaciones cuyos factores son todos iguales pueden expresarse de una manera más reducida como una "Potenciación"

La potenciación es la operación que nos permite expresar de una manera más abreviada una multiplicación de factores iguales.

El exponente indica cuantas veces aparece la base como factor.

Ejemplo

Base $\rightarrow 2^{4\rightarrow \text{Exponente}} = 2 \cdot 2 \cdot 2 \cdot 2 = 16 \rightarrow \text{Potencia}$

factores

Si el exponente es 2, se lee al cuadrado, por ejemplo: 4², se lee "cuatro al cuadrado".

Si el exponente es 3, se lee al cubo, por ejemplo: 6³, se lee "seis al cubo".

- 6) Expresemos a través de una potencia, la cantidad de:
 - a. Bacterias después de 10 hs
 - b. Bisabuelos de una persona.
- 7) Si el exponente es 1, uno:

Resolver

¿Qué resultado obtengo?_____

9) Realizar las potencias y luego completar el cuadro.

Podemos decir que, todo número que tenga exponente 1, da como resultado el mismo _____

8) Expresar estos productos en forma de potencia. Luego calcularla

a.
$$5.5.5.5 =$$

$$b.4.4.4 =$$

$$d.8.8.8.8 =$$

$$f. 20.20 =$$

<u>Potencias Especiales</u> Si el exponente es 0, cero, la potencia es **siempre** 1, uno.

Ejemplos:

$$8^0 = 1$$

$$9^0 = 1$$
 $12356^0 = 1$

K	0	1	2	3	4	5	6	7	8	9	10
\mathbf{K}^2				9							
\mathbb{K}^3				27							

K	11	12	13	14	15	16	17	18	19	20
K^2										
K^3										

Radicación

La radicación es la operación inversa de la potenciación.

Por ejemplo:

Para averiguar la raíz cuadrada de 36, tengo que pensar que número elevado al cuadrado (recuerden que es 2) da como resultado 36.

$$\sqrt{36} = 6$$
 porque $6^2 = 36$

Para averiguar la raíz cúbica de 8, tengo que pensar que número elevado al cubo (recuerden que es 3) da como resultado 8. Este te lo dejo para que vos lo indice raíz pienses y completes.

Elementos de la radicación

¡Importante!

La raíz cuadrada se escribe así $\sqrt{}$, el índice 2 no se escribe se da por entendido que es cuadrada. En cambio, cuando es otro índice se indica ya sea raíz cúbica $\sqrt[3]{}$, raíz cuarta $\sqrt[4]{}$, etc.

10) Calcular las siguientes raíces

$\sqrt{25} = \sqrt{121} =$	$\sqrt{4} = \sqrt{100} =$	$\sqrt[3]{512} = \sqrt[3]{8} = \sqrt[3]{12}$	$\sqrt[5]{32} = \sqrt[4]{16} =$
$\sqrt{81} = \sqrt{36} = $	$\sqrt{121} = \sqrt{169} =$	$\sqrt[3]{64} = \sqrt[3]{1000} =$	$\sqrt[16]{1} = \sqrt[4]{625} =$

11) Con las siguientes piezas, resuelve este dominó en tu carpeta. Puedes recortar las fichas o dibujarlas.

10		1.		11 (82	2	7°
12 (4	9 (/ T	7 (12°	4	3°
121 (<i>144</i>	25 (<u>√16</u>	9 (\ <u>8</u> I	144	√ <u>12</u> 1
64 (5°	5 (<i>/</i> 49	81	<i>√</i> 64	ģ (9 ²
49 (J 9	4	2 ²	8 (6²	100	/36
1 (/100	3 (10°	36	√25	16	/4

Propiedades de la Potenciación

Estas son las propiedades que se cumplen en la potenciación.

NOMBRE DE LA PROPIEDAD	ESPECIFICACIÓN	EJEMPLO
Producto de potencias de igual base	Se copia la misma base y se suman los exponentes	$2^3 \cdot 2^2 = 2^3 + 2^3 = 2^5 = 32$
Cociente de potencias de igual base	Se copia la misma base y se restan los exponentes	$2^7: 2^5 = 2^7 - {}^5 = 2^2 = 4$
Potencia de otra potencia	Se copia la misma base y se multiplican los exponentes	$(2^3)^2 = 2^3 \cdot ^2 = 2^6 = 64$
Propiedad distributiva de la potenciación con respecto a la multiplicación	Se puede elevar cada factor al mismo exponente y luego resolver	$(2 \cdot 5)^2 = 2^2 \cdot 5^2 = 4 \cdot 25 = 100$
Propiedad distributiva de la potenciación con respecto a la división	Se puede elevar al mismo exponente el dividendo y el divisor, luego resolver	$(16:2)^2 = 16^2: 2^2 = 256: 4 = 64$

12) Resolver aplicando propiedades de la potenciación

a.
$$2^4 \cdot 2^2 =$$

b.
$$4^2 \cdot 4^4 =$$

b.
$$4^2 \cdot 4^4 =$$
 c. $8^8 : 8^5 =$ d. $9^{10} : 9^8 =$

d.
$$9^{10}: 9^8 =$$

$$e. (10^2)^3 =$$

$$f. (4^2)^3 =$$

g.
$$(2.3)^3 =$$

h.
$$(2.7)^2 =$$

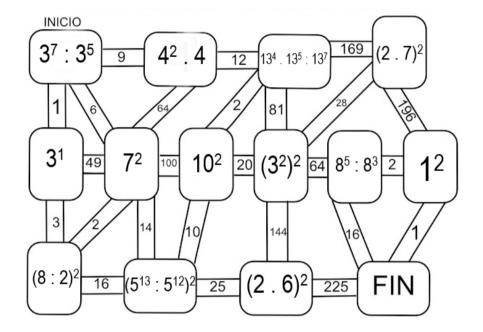
h.
$$(2.7)^2 =$$
 i. $(10:5)^2 =$ j. $(8:2)^3 =$

i.
$$(8:2)^3 =$$

$$k. 7^4.7^5: 7^7$$

k.
$$7^4 cdot .7^5 cdot .7^7 ext{ } = cdot 1. (2^4 cdot .2^3)^2 cdot 2^8 ext{ } = cdot$$

13) María resolvió estos cálculos, pero algunos están mal. Ayuda a María a encontrar los errores y escribí la respuesta correcta.


a.
$$8^9 : 8^9 = 8$$

b.
$$(5^4)^2 = 5^6$$

c.
$$(14:2)^3 = 14^3: 2^3$$

d.
$$(12-2)^3 = 12^3 - 2^3$$

14) Resuelve el siguiente laberinto de potencias; para lo cual deberás utilizar las propiedades de la potencia.

15) Calcular las siguientes potencias

a.
$$6^4 =$$

b.
$$2^6 =$$

b.
$$2^6 =$$
 c. $3^2 =$ d. $1234^0 =$

e.
$$5^4 = f. 1^5 =$$

- 16) Expresar estos productos en forma de potencia. Luego calcularla
- a. 5.5.5.5 =

$$b. 4. 4. 4 =$$

$$c.6.6 =$$

$$c. 6. 6 = d. 8.8.8.8 =$$

g.
$$25.25 =$$

- 17) Problemas con potencias
 - a. Natalia les mandó un WhatsApp a sus tres mejores amigas contándoles que había ganado dos entradas para el recital. Cada amiga se lo mandó a tres amigas más y cada una de ellas lo reenvió a tres amigos varones ¿Cuántos varones recibieron el mensaje?
 - b. ¿Cuántos números de 3 dígitos se pueden formar con los dígitos 6, 7 y 8 si se pueden repetir?
 - c. Los tornillos vienen en bolsitas de 10. Cada 10 bolsitas se empaqueta una caja. Las cajas se embalan de a 10 en cajones y los cajones se guardan de a 10 en un contenedor para ser transportados ¿Cuántos tornillos lleva un contenedor?
 - d. Una bacteria se reproduce dividiéndose siempre por la mitad. De una misma bacteria se obtiene dos bacterias nuevas. A su vez, de cada una de estas se obtienen dos bacterias más. ¿Cuántas bacterias hay después de una división? ¿Cuántas bacterias hay después de dos divisiones? ¿y luego de tres? ¿y después de 5? ¿y de 7?

- En una familia, los bisabuelos son los papás de los abuelos y los tatarabuelos son los papás de los bisabuelos, ¿Cuántos tatarabuelos hay en el árbol genealógico de una persona? Si quisiéramos continuar con el árbol genealógico, ¿cuántos antepasados habría en la quinta generación? ¿Cuántos antepasados de la sexta generación tiene una persona? ¿Y cuántos antepasados tiene la séptima generación?
- Los descendientes de una persona son sus hijos, nietos, bisnietos, tataranietos, etc. Supongan que Rogelio tiene 4 hijos (primera generación de descendientes) y cada uno de sus hijos tiene a su vez 4 hijos (segunda generación de descendientes), de los cuales cada uno tiene 4 hijos (tercera generación de descendientes) y así sucesivamente. Es decir, cada miembro de la familia tendrá exactamente 4 hijos. ¿Cuántos descendientes tendrá Rogelio en la tercera generación? ¿Cuántos descendientes tendrá Rogelio en la sexta? Si en lugar de tener 4 hijos, cada uno tuviera 5 hijos, ¿cuántos descendientes tendría Rogelio en la cuarta generación? ¿Y en la octava?
- 18) Cálculos con potencias

a.
$$25^2 - 18.20 - 124:4 + 7^3 =$$

b.
$$125 - 8^2 + 25.9 - 10^2 =$$

c.
$$(12-3.2)^2 + 4^3: 2^4 - (8-5): 9^0 =$$

d.
$$(24-2.3):6+125:5^2-150:2:3=$$

19) Mariana fue a la librería y compró 3 lapiceras que costaban \$30 cada una, 2 cuadernos de \$280 y 4 mapas de \$8. Vio la docena de lápices que costaba \$260 y decidió llevar media. Al llegar a la caja, presentó 2 vales que decían "\$150 de descuento en tu próxima compra".

Cuando llegó a su casa quiso revisar la cuenta. Para eso planteó sus gastos en un único cálculo, combinando operaciones con números naturales. Lo que escribió fue:

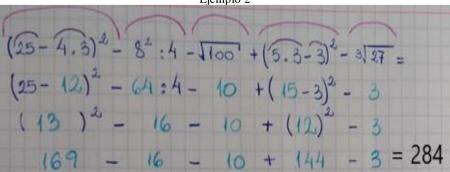
$$3.30 + 2.280 + 4.8 + 260 : 2 - 150 . 2$$

Intentó resolverlo con una calculadora vieja que tenía y el resultado que obtuvo fue ¡\$206.072! ¿Puede ser esto posible? ¿Cómo resolverías la cuenta para saber cuánto gastó Mariana en la librería?

<u>Ayuda:</u>

Respetando estas reglas básicas de los cálculos combinados, veamos cómo resolver el cálculo combinado de cuánto gastó Mariana en la librería

$$3.30 + 2.280 + 4.8 + 260 : 2 - 150.2 =$$
 $90 + 560 + 32 + 130 - 300 =$


Mariana gastó \$_____ en la librería.

Antes de seguir, te dejamos algunos ejemplos de resolución de cálculos combinados

Ejemplo 1

$$700: 2^{2} + 29.3.5 + (16+3)^{2} - \sqrt{64} = 700: 4 + 435 + 19^{2} - 8 = 175 + 435 + 361 - 8 = 963$$

Ejemplo 2

20) Crucinúmero: Realizar los cálculos y completar el crucinúmero con los resultados de los siguientes cálculos combinados.

Referencias:

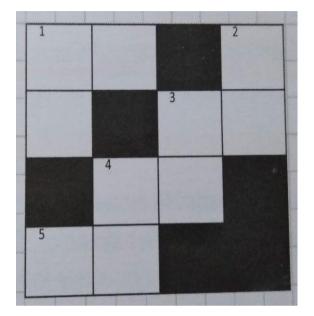
Horizontales

1) $10^2:5+2^3.3=$

3) $(\sqrt{16} \cdot \sqrt{25})$: $2^2 + 3^4 : 3^2 =$

4) $\sqrt{36} + 10^3 : 10^2 - 1^5 =$

5) $(2.2^3 - \sqrt[3]{27}): 5^0 + 3^2.2 =$


Verticales

1) $(6.2-2^3)^2 + (10-5)^2 =$

2) $2^5: 2^2 + \sqrt{10^2 - 6^2}$. 2 =

3) $(6^2 - 2.3): \sqrt[4]{16} =$

4) $(9^2:3^2):12^0+\sqrt[3]{64}-\sqrt[5]{32}=$

- 21) Resuelve las siguientes situaciones problemáticas planteando un solo cálculo para resolverla.
 - a. Marcos recibió \$5000. Le dio la mitad a su hermano, y luego compró 2 libros que costaban \$550 cada uno. ¿Cuánto dinero le queda?
 - b. Un grupo de chicos organizó rifas para comprar algunos equipos para la escuela. Quieren comprar un televisor que cuesta \$17.800, cuatro proyectores que cuestan \$14.299 cada uno y 6 equipos de música que cuestan \$14.790 cada uno. El dueño de una librería les ofreció regalarles los talonarios para las rifas. ¿Qué cantidad de dinero se debe recaudar para poder comprar todo?
 - c. En un supermercado, el precio de una botella de vino es de \$350, pero si se compran 2 botellas, se aplica un descuento de \$120 en total. Si Andrea compró 6 botellas de vino para una fiesta, ¿cuánto pagará en la caja?
 - d. Un repartidor de pizzas gana \$1300 cada día y gasta, en promedio, \$250 en nafta y \$500 en reparaciones de la moto. Si además recibe \$400 de propina, ¿cuánto ahorra diariamente?

Cálculos Combinados II

- 22) Plantear y resolver los siguientes problemas
 - a. Han comenzado las ofertas y Julián se compra cuatro remeras de \$649 cada una, dos camisas de \$989 cada una, tres jeans a \$ 1345 cada uno y un chaleco por \$799. Paga con seis billetes de \$1000, seis de \$500 y cinco de \$100. ¿Cuánto recibirá de vuelto?
 - b. Martina jugo un simulador de carreras de F1. Cada vuelta completa al circuito le otorgaba 1500 puntos. Dio 8 vueltas completas, pero le descontaron 600 puntos por salirse de la pista en una curva. Después, tuvo que entrar en boxes a reparar el auto y perdió otros 700 puntos. Alcanzo a dar otras tres vueltas completas, ante de que termine el tiempo. ¿Cuál es el puntaje que obtuvo Martina?
 - c. Una furgoneta lleva 50 cajas de tabletas de turrón. En 23 de las cajas hay 36 tabletas en cada una y en el resto hay 24 tabletas en cada una. Deja en una tienda 356 tabletas . ¿Cuántas tabletas de turrón quedan en la furgoneta?

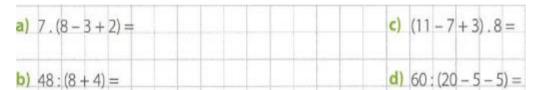
d. En un festival de cine, se ha encargado la confección de las revistas de programación del festival. Han llegado 125 paquetes con un coste de \$840 cada uno. Se hizo un descuento de \$35 por paquete y un recargo de \$354 sobre el total del envío. ¿Cuánto se pagó por la programación?

Propiedad distributiva

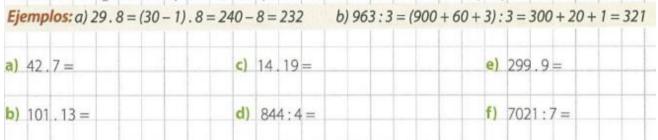
La multiplicación es distributiva respecto de la adición y sustracción a derecha e izquierda.

$$3.(2+5) = 3.2+3.5$$

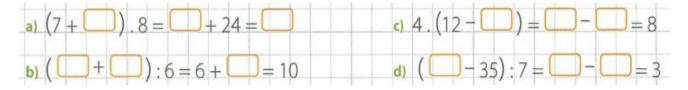
 $3.7 = 6 + 15$


$$(8-2).4 = 8.4-2.4$$

$$6.4 = 32 - 8$$


$$24 = 24$$

La división es distributiva respecto de la adición y sustracción sólo a izquierda.


23) Resolver aplicando propiedad distributiva

24) Resolver las operaciones aplicando apropiadamente la propiedad distributiva. Se da un ejemplo como guía:

25) En los ejercicios a continuación se aplicó la propiedad distributiva, pero se borraron algunos números. Completa los espacios vacíos.

26) Separar en términos y resolver.

a.
$$24.3 + 52 : 2 - 18 : 9 - 15.4 =$$

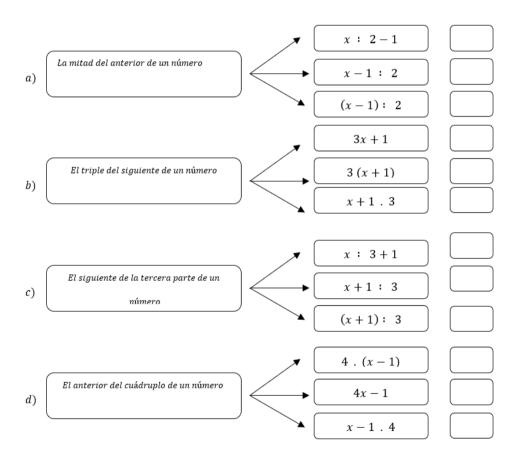
b.
$$21:3+45:5+3.17-34:2=$$

c.
$$(3+12) . 8 - 16 : 4 - 13 . 5 =$$

d.
$$100 - 72 : (6 + 3) + 54 : 6 =$$

e.
$$18: 3 - \sqrt{16} + 6^2 - 2.7 - 5.3 =$$

f.
$$11^2 - 6.8 - \sqrt{49} + 8.10 + 5 =$$


g.
$$16 - (2.3 + 8) : 7 - \sqrt{4} + 15^2 - \sqrt[3]{27} =$$

h.
$$\sqrt{144} + 9 \cdot (35 : 7 + 6) - 3^4 + 125^0 = 7$$

Ecuaciones

- 27) Expresar en lenguaje simbólico.
 - a. La suma entre ocho y doce es veinte
 - b. Nueve es menor que trece
 - c. El doble de quince es treinta
 - d. La diferencia entre catorce y seis es ocho
 - e. La cuarta parte de cien es veinticinco
- 28) Traducir a lenguaje simbólico y resolver:
 - a. La diferencia entre quince y siete
 - b. El producto entre ocho y catorce
 - c. La cuarta parte de ciento treinta y dos
 - d. El quintuple de veintinueve
 - e. La diferencia entre el doble de discisiete y veinticinco
- 29) Marcar la expresión correcta:

30) Hallar mentalmente el valor de cada incógnita:

a)
$$m + 3 = 12 \rightarrow m =$$

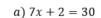
$$d) t + t = 14 \rightarrow t =$$

$$g) 17 - h = 9 \rightarrow h =$$

b)
$$r - 7 = 20 \rightarrow r =$$

$$e) b : 3 = 4 \rightarrow b =$$

$$h) z : 4 = 1 \rightarrow z = \boxed{}$$


c) 5 .
$$p = 20 \rightarrow p =$$

$$f) \ 4 + f = 4 \rightarrow f =$$

i) 30 :
$$s = 6 \rightarrow s =$$

31) Probar cada valor en las ecuaciones y unirlas con su solución:

b)
$$x^2 + 1 = 50$$

1)
$$x = 5$$

2)
$$x = 18$$

3)
$$x = 4$$

$$c)\sqrt{2x} = 4$$

$$d) x^2 + x = 30$$

$$e) x : 3 + 4 = 10$$


4)
$$x = 8$$

5)
$$x = 12$$

6)
$$x = 7$$

$$a \rightarrow b \rightarrow c \rightarrow d \rightarrow e \rightarrow$$

32) Resolver las siguientes ecuaciones:

c)
$$5x - 3 = 3x + 7$$

e)
$$9 + 7x - 3 - 4x = 27$$

b)
$$3x - 4 = 20$$

d)
$$4x + 9 + x = 24$$

$$6x - 7 + x = 5x + 21$$

33) Resolver las ecuaciones aplicando propiedad distributiva:

a)
$$5(x + 1) = 2x + 17$$

e)
$$5x - 11 + 2(2x + 3) = 2x + 9$$

b)
$$7x - 5 = 3(x + 9)$$

$$(7 + 4x) - 15 - 8x = 92$$

c)
$$2(3x-8) = 3x + 5$$

g)
$$11 + 7(2x - 1) - 9x = 2(x + 11)$$

d)
$$4(x-1) + 3(x+5) = 2x + 41$$

h)
$$6(2+3x)+3(x-4)=63$$

34) Sin despejar, rodeá la o las ecuaciones que tienen por solución a x=13:

$$3 \cdot x - 75 : 25 = 2^3 - 2$$

$$4 \cdot x + 8^2 : 4 = 68$$

$$x + 111 - 84 = 4^3 \cdot 5$$

$$(x + 41) \cdot 2 = 108$$

- 35) Resolvé planteando la ecuación correspondiente. Luego, verificá la solución:
- Al doble de un número le sumé 1 y obtuve 309. ¿Cuál es el número?
- c) ¿Cuál es la edad de Rodrigo, si dentro de 32 años tendrá el doble de 41?
- b) La suma entre un múltiplo de 4 y 51 es igual a 159. ¿Cuál es el número?
- d) A la mitad de un número se le resta 1 y se obtiene la tercera parte de 213. ¿De qué número se trata?
- 36) Resolver las siguientes ecuaciones con potencias y raíces.

a)
$$x^2 - 5 = 59$$

c)
$$\sqrt{x} + 2 = 7$$

c)
$$\sqrt{x} + 2 = 7$$
 e) $x^3 + 75 = 200$ g) $(x + 2)^2 = 81$

g)
$$(x+2)^2 = 81$$

b)
$$3x^2 = 27$$

d)
$$4.\sqrt{x} = 20$$

f)
$$3.\sqrt[3]{x} + 5 = 26$$
 h) $\sqrt{x-3} = 6$

h)
$$\sqrt{x-3} = 6$$

Múltiplos y divisores

37) Marquen con una x donde corresponda:

Múltiplo de	12	18	27	30	42	56	84	90
2								
3								
4								
5								
6								
7								
8								
9								

- 38) Escribir los múltiplos pedidos:
 - a. Los primeros 8 múltiplos de 12.
 - b. Múltiplos de 17 comprendidos entre 100 y 200.
 - c. Múltiplos de 25 menores que 500 y pares.

39) Coloca V o F.	
a) 8 es múltiplo de 16	f) 51 es múltiplo de 17
b) 100 es múltiplo de 25	g) 1 es múltiplo de 2
c) 12 es múltiplo de 12	h) 5 es múltiplo de 1
d) 121 es múltiplo de 11	i) 0 es múltiplo de 10
e) 45 es múltiplo de 5	j) 6 es múltiplo de 18
40) Escribir números que cumplan lo pedido:	
a) El menor múltiplo de 14 mayor que 200	
b) El mayor múltiplo de 17 menor que 300	
c) El múltiplo de 23 entre 150 y 170	
d) Es múltiplo de 13, comprendido entre 100 y 150	
e) Es múltiplo de 15 y 20, y menor que 200	
41) Tachar los números que no cumplan lo pedido:	
a) Múltiplo de 12	
6 18 36 0 60 84	90 144 12 4
b) Mültiplo de 18	
18 9 24 36 1 0	54 72 100 6

42) Marcar con x donde corresponda:

Divisible por	2	3	4	5	6	8	9	10	11	12	15
204											
405											
704											
1 000											
1 800											
2 750											
3 420											
8 415											

43) Unir cada número con sus divisores:

a) 580	b) 693	c) 1 410	d) 2 112
(e) 64	35 <i>f</i>) 7	324 <i>g</i>) :	13 428

1) Divisible por 2
2) Divisible por 3
3) Divisible por 4
4) Divisible por 5
5) Divisible por 6
6) Divisible por 8
7) Divisible por 9
8) Divisible por 10
9) Divisible por 11
10) Divisible por 12
11) Divisible por 15

44) Escribir V o F:

a) El número 8 tiene tres divisores.	d) 10 tiene solo 10 divisores.	
b) Todo número es divisor de si mismo.	e) 14 tiene solo cuatro divisores.	
c) Un número es divisible por 4, si es par.		

45) El matemático griego Eratóstenes (siglo III a.C.) ideó una manera rápida de obtener todos los números primos hasta uno concreto. Se trata de un procedimiento denominado Criba de Eratóstenes, que veremos cómo funciona encontrando todos los números primos entre 1 y 100.

En la criba ve tachando números como se indica a continuación:

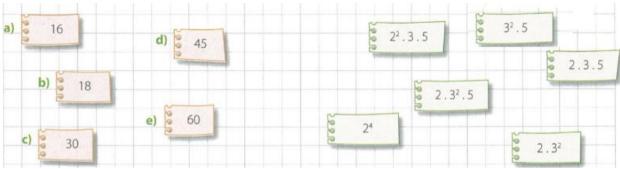
- a- Tacha el 1.
- b- Tacha todos los múltiplos de 2, excepto el 2.
- c- Tacha todos los múltiplos de 3, excepto el 3.
- d- Tacha todos los múltiplos de 5, excepto el 5.
- e- Tacha todos los múltiplos de 7, excepto el 7.
- f- Realiza una lista de los números que quedaron sin tachar. Esos serán los primeros primos que existen menores a 100.
- g- ¿Por qué no hemos incluido en el proceso a los números 4, 6, 9 y 10?

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

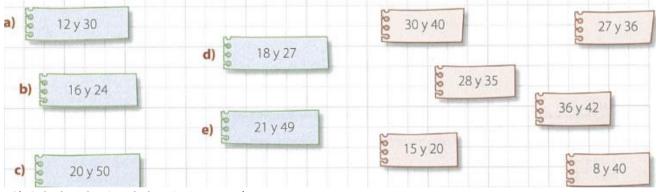
46) Marca con una x los números que son coprimos:

a) 2 y 15	c) 18 y 27

47) Marca con una x los números que se encuentran correctamente factoreados:


a)
$$18 = 2.9$$

$$b) 20 = 5 . 2 . 2$$


$$d) 40 = 2.5.4$$

$$f)75 = 5.3.5$$

48) Unir cada número con su correspondiente factoreo:

49) Unir los pares de números con el mismo MCD

50) Calcular el MCM de los siguientes números:

a) 30 y 45

c) 42 y 63

e) 12, 18 y 27

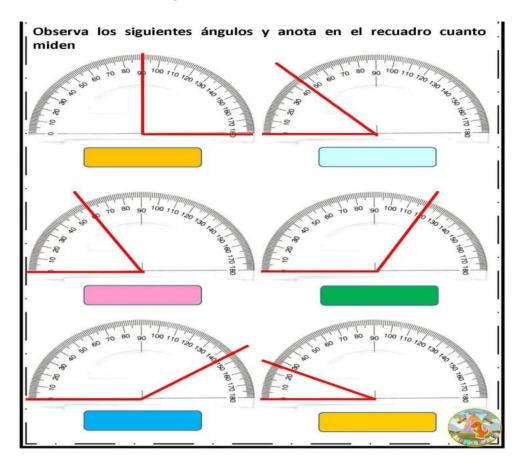
b) 24 y 40

d) 9, 15 y 30

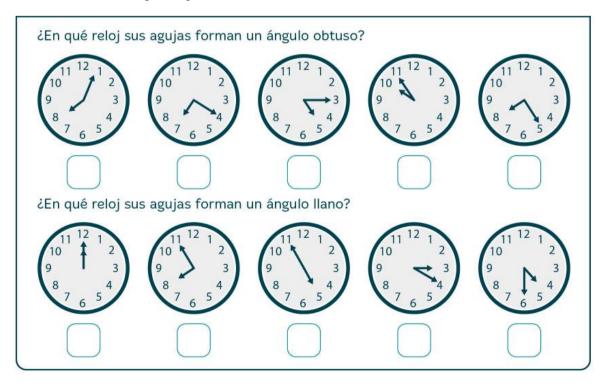
51) Plantea y resuelve los siguientes problemas:

- a) Mariana debe tomar dos pastillas: una cada 6 horas y la otra cada 9 horas. Si a cierta hora toma las dos pastillas juntas, ¿después de cuántas horas volverá a tomarlas simultáneamente?
- b) Un comerciante tiene 40 botellas de gaseosa y 56 botellas de jugo. Si quiere colocarlas en la menor cantidad de estantes con la misma cantidad de botellas, pero sin mezclarlas, ¿cuántas botellas debe colocar por estante y cuántos estantes ocupará?
- c) Un afiche mide 96 cm de largo y 84 cm de alto. Se lo quiere colocar en una pared con la menor cantidad posible de chinches y que todas estén a la misma distancia una de otra. ¿A qué distancia se debe colocar cada chinche y cuántas serán necesarias?

- d) Un repartidor de gaseosas pasa por un quiosco cada 4 días, por un almacén cada 10 días y por un supermercado cada 15 días. Si pasó por los tres negocios un mismo día, ¿después de cuántos días volverá a suceder lo mismo?
- e) Federico tiene 3 tiras de papel: de 27 cm, 36 cm y 45 cm. Si quiere cortarlas en la menor cantidad de partes iguales, ¿cuánto debe medir cada una y cuántas tiras debe cortar?
- f) Matías carga combustible en su automóvil cada 15 días, controla el aceite cada 20 días y la presión de los neumáticos, cada 25 días. Si un día cargó combustible, revisó el aceite y la presión de los neumáticos, ¿volverá a realizar las tres cosas simultáneamente antes de que pase un año?

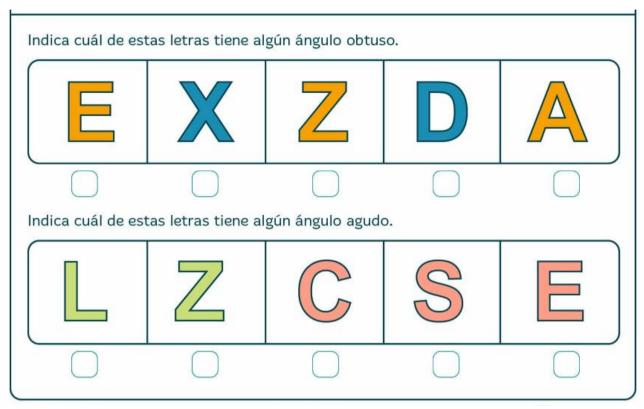

52) Mas problemas para pensar:

- a) Una plaza rectangular tiene 120 metros de largo y 100 metros de ancho. Se quiere plantar la menor cantidad de árboles en todo su perímetro y a una misma distancia uno del otro. ¿Cuántos árboles deben plantarse y a qué distancia entre ellos?
- b) Dos micros parten en el mismo momento y por la misma ruta. Uno de ellos tiene una parada cada 42 kilómetros y el otro cada 70 kilómetros. ¿Cuántas paradas tienen en común en 500 kilómetros?
- c) Tres hermanos dan vueltas a un circuito en bicicleta. El mayor tarda 18 minutos en dar una vuelta; el del medio, 24 minutos y el menor, 36 minutos. Si partieron todos al mismo tiempo, ¿después de cuánto se vuelven a encontrar en el punto de partida y cuántas vueltas dio cada uno de ellos?
- d) Un quiosquero tiene 192 latas de cola, 144 de naranja y 216 de lima limón. Si quiere poner la mayor cantidad de latas en una heladera, pero la misma cantidad de cada sabor, ¿cuántas latas debe colocar en la heladera?

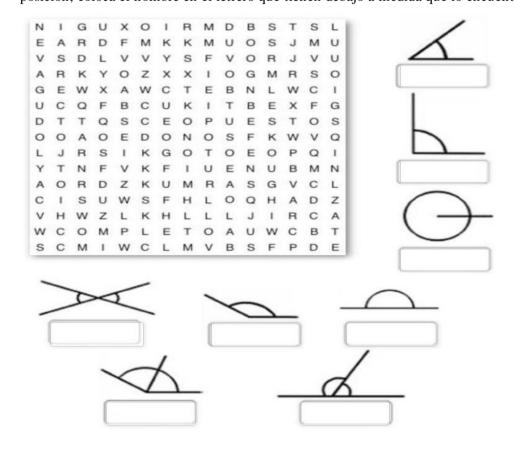


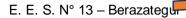
3. Ángulos

1) Indica la medida de los ángulos a continuación:



2) Marca con una x según lo pedido:





3) Observa cada letra y marca lo pedido:

- 4) Construye los ángulos pedidos y clasifica: 145°, 75°, 90°, 130°, 270°, 310°, 65°, 45°, 180°.
- 5) Dibuja un ángulo de 70°, luego un ángulo complementario y otro suplementario al dado.
- 6) En la sopa de letras encuentra el nombre de los ángulos clasificados por la medida de la apertura y posición, colocá el nombre en el letrero que tienen debajo a medida que lo encuentres:

7) El amo de la Luna

La nave de Colón llevaba tiempo embarrancada en la isla de Jamaica, sus hombres amenazaban con un motín y los indígenas, cansados de espejitos y cuentas, se negaban a darnos comida.

La situación era desesperante y Colón, para calmar a sus hombres, les prometió comida y citó a los jefes indígenas esa misma noche. –¡Sabed que me habéis enojado y, por vuestra negativa a colaborar, haré que la Luna se torne roja de sangre y luego desaparezca!

Los jefes indios miraron la Luna y, tras comprobar cómo se cumplían las amenazas de Colón, le pidieron aterrorizados que resucitara la Luna, prometiéndole seguir llevando comida para él y sus tripulantes. Colón movió los brazos, como invocando a alguien, y les aseguró: —La Luna aparecerá de nuevo esta misma noche, pero si faltáis otra vez a vuestra palabra jamás la volveréis a ver.

Después de esto se retiró satisfecho a sus aposentos, felicitándose por haber llevado consigo el Efemerides del famoso matemático Regiomontanus, donde se predecía el eclipse que acababa de ocurrir. Regiomontanus escribió también sobre ángulos, medidos en grados, minutos y segundos.

¿Cuánto mide un ángulo recto? ¿Y la cuarta parte de un ángulo recto?

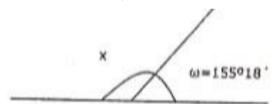
- 8) Un ángulo mide 59° 32′. ¿Cuánto le falta para medir 60°?
- 9) Traduce a segundos las siguientes medidas de tiempo
 - a. 100 min
 - b. 1,5 h
 - c. Media hora
 - d. 60 min
- 10) Efectúa estas operaciones.

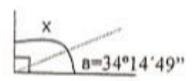
a.
$$12^{\circ} 15' 58'' + 23^{\circ} 22' 19'' =$$

b.
$$35^{\circ} 45' + 26^{\circ} 10' + 26^{\circ} 15'33 =$$

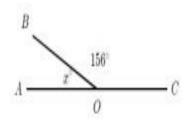
c.
$$32^{\circ} 5' 23'' -17^{\circ} 22' 33'' =$$

- d. 19° 35' -11° 34" =
- e. $36^{\circ} 55'58'' \times 2 =$
- f. 23° 22' 19" x3 =
- g. $33^{\circ} 20' 09'' : 2 =$
- h. 35° 45':3=

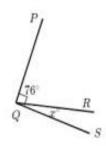

Ángulos


11) Calculá el complemento y el suplemento de los siguientes ángulos, cuando sea posible.

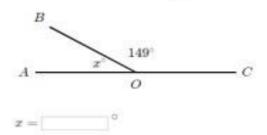
ÁNGULOS	Complementario	Suplementario
A) 23°		
B) 126°		
C) 12° 45'34"		
D) 36° 28'		
E) 67° 23' 58"		



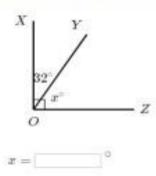
- 12) Determinar si los siguientes enunciados son verdaderos o falsos y justificar la respuesta.
 - a) Dos ángulos opuestos por el vértice siempre son iguales.
 - b) Dos ángulos opuestos por el vértice son suplementarios.
 - c) Dos ángulos opuestos por el vértice son complementarios.
 - d) La suma de dos ángulos agudos es siempre otro ángulo agudo.
 - e) Los ángulos agudos miden menos de 90°.
 - f) Dos ángulos que miden 25° y 65° son suplementarios.
 - g) Los ángulos obtusos míden más de 90°.
 - h) Los ángulos que sumados dan 180° son suplementarios.
 - Los ángulos opuestos por el vértice siempre son agudos.
 - Los ángulos opuestos por el vértice nunca son rectos.
 - k) Dos ángulos rectos son suplementarios.
 - Dos ángulos rectos son complementarios.
 - m) Los ángulos rectos no son ni agudos ni obtusos.
 - n) Los ángulos rectos miden 90°.
 - Dos ángulos que miden 39° y 51° son complementarios.
 - p) Dos ángulos que miden 72° y 108° son suplementarios.
 - q) Los ángulos llanos miden 180°.
 - r) Tres ángulos consecutivos pueden formar un ángulo llano.
 - s) Tres ángulos consecutivos siempre forman un ángulo llano.
 - t) Los opuestos por el vértice tienen un lado en común.
- 13) Los ángulos A y B son suplementarios y sus valores son: A=3X+20° y B=8X-40°. Determina la amplitud de cada uno de ellos.
- 14) Determinar el valor de X, en cada caso.



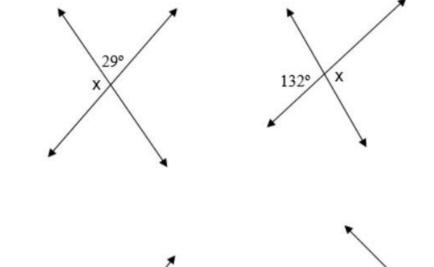
- 15) Se sabe que A y B son suplementarios y además que A=5X-20° y B=3X+40°. Hallar el valor de cada uno de ellos.
- 16) A y B son dos ángulos opuestos por el vértice y sus valores son A=6X-20° y B=3X+10°. ¿Cuánto mide cada uno de ellos?
 - 17) Encuentre la medida de cada ángulo, según corresponda.



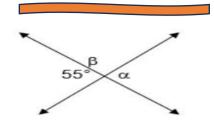
b) ¿Cuál es la medida del ángulo x°?

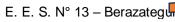


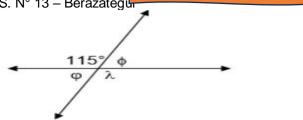
c) ¿Cuál es la medida del ángulo xº?

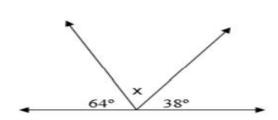


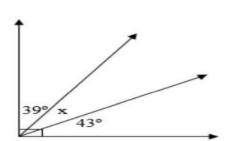
d) ¿Cuál es la medida del ángulo xº?

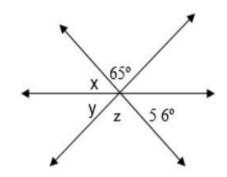


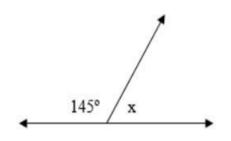

X=____°

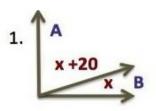

18) Calculá el valor del ángulo desconocido, en cada caso.

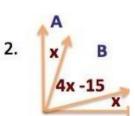


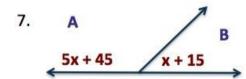


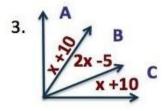


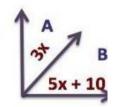


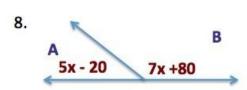


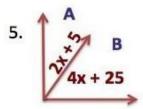


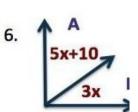


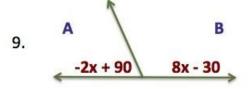


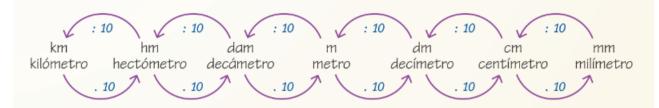

19) Hallar el valor de cada ángulo.



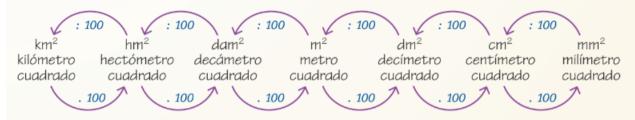








4. Figuras planas. SIMELA


Tengamos en cuenta el siguiente resumen:

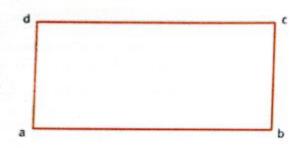
El **perímetro** de una figura se obtiene sumando las medidas de todos los lados. Antes de calcular el perímetro, cada medida debe estar expresada en la misma unidad.

Para **medir una superficie** se debe elegir una unidad de medida y determinar la cantidad de veces que entra en esa superficie.

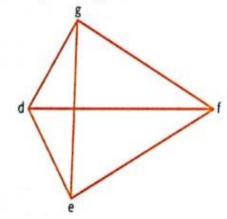
Se llama área a la cantidad de veces que entra en la superficie la unidad de medida elegida.

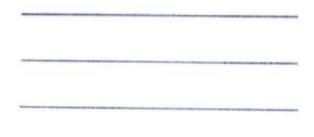
FIGURA	DIBUJO	ÁREA	FIGURA	DIBUJO	ÁREA
Triángulo	B H	B . H 2	Trapecio	H B	$\frac{(B+b) \cdot H}{2}$
Rectángulo	НВ	В.Н	Rombo	D ₁	$\frac{D_1 \cdot D_2}{2}$
Cuadrado	L	L ²	Romboide	<u>D</u> ₂	$\frac{D_1 \cdot D_2}{2}$
Paralelogramo	√I _H B	В.Н	Círculo	R	π. R²

1) Marquen con una x las equivalencias correctas:


2) Convierte en la unidad indicada:


6 km = hm		6 km =		. hm
-----------	--	--------	--	------


- 3) Para pensar: El Pirata Barba Plata ha llegado a la isla del Coral para buscar un tesoro. En el mapa pone que, desde la orilla, debe recorrer 3,7 hm a la pata coja hacia el centro de la isla, y después otros 8,5 dam dando volteretas en la misma dirección. ¿Cuántos metros recorrerá en total desde la orilla hasta el tesoro? Expresa el resultado también en kilómetros.
- 4) Problemas de conversión de medidas de longitud nº 2: ¡Qué pelo más bonito tiene Gabriela! Antes era la chica que más largo tenía el pelo de toda la clase: la melena le medía 6 decímetros de longitud. Pero ayer se lo cortó 25 centímetros, así que ahora la chica con el pelo más largo de la clase es María. ¿Cuántos centímetros mide la melena de Gabriela ahora? Expresa el resultado también en milímetros.
- 5) Calculen el perímetro de cada figura. Expresen el resultado en metros.


a.
$$\overline{ab} = 600 \text{ mm}$$
; $\overline{ad} = 15 \text{ dm}$

b. $\overline{de} = 0.04 \text{ m}$; $\overline{fg} = 5 \text{ cm}$

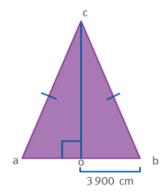
6) Completen las siguientes equivalencias:

b. 30 mm² =
$$\int cm^2$$

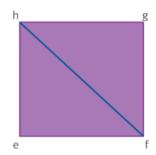
c.
$$30 \text{ km}^2 = \text{dam}^2$$

d. 350 cm² =
$$m^2$$

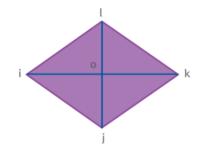
e.
$$m^2 = 5 \text{ km}^2$$


f.
$$hm^2 = 23 m^2$$

g.
$$dm^2 = 4 \text{ m}$$


h.
$$cm^2 = 50 \text{ mm}^2$$

7) Calculen el área de las siguientes figuras, expresando el resultado en m²:


$$\overline{\text{co}} = 40 \text{ m}$$

$$\overline{\text{fh}} = 0.03 \text{ hm}$$

c. ijkl rombo;
$$\overline{jo} = 300 \text{ cm}$$

 $\overline{io} = 0,25 \text{ hm}$

